The GTS Library
GTS logo


Getting GTS
        Debian packages
        Sample files
        Python bindings
        Darcs repository
        Daily snapshots

Mailing Lists
Sourceforge page

    GTS in action

    GTS Reference
    GLib Reference
    Installation instructions

Help needed
    Bug tracking
    Contribution instructions

    Projects using GTS

GTS is hosted by

A small collection of articles found on the web relevant to the design of GTS. This list is also available as a BibTeX file.

Algorithmic, data structures and computer graphics

An unstructured wave drag code for the preliminary design of future supersonic aircraft. S. Rallabhandi and D. Mavris. 33rd AIAA Fluid Dynamics Conference, Orlando, June 23-26 2003.

CMSC 420: Data Structures. Dave Mount, September 2008.

CMSC 427/828M: Computer Graphics and Computational Geometry. Dave Mount, September 2008.

CMSC 251: Algorithms. Dave Mount, 2008.

CMSC 451: Design and Analysis of Computer Algorithms. Dave Mount, September 2008.

CMSC 754: Computational Geometry. Dave Mount, September 2007.

Geometric robustness

Removing Degeneracies by Perturbing the Problem or the World. P. Alliez, O. Devillers and J. Snoeyink. Technical Report 3316, INRIA, 1997.

RSVP: A geometric toolkit for controlled repair of solid models. G. Barequet, C.A. Duncan and S. Kumar. IEEE Trans. on Visualization and Computer Graphics, 4:162-177, April-June 1998.

Efficient Exact Evaluation of Signs of Determinants. H. Brönnimann and M. Yvinec. Technical Report 3140, INRIA, 1997.

Exact rounding for geometric constructions. H. Brönnimann and S. Pion. GAMM/IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, 1997.

Computing Exact Geometric Predicates Using Modular Arithmetic with Single Precision. H. Brönnimann, I. Emiris, V. Pan and S. Pion. Technical Report 3213, INRIA, 1997.

Safe and effective determinant evaluation. K. L. Clarkson. Proc. 31st IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, October 1992.

MAPC: A library for Efficient and Exact Manipulation of Algebraic Points and Curves. Tim Culver, Dinesh Manocha and Shankar Krishnan. Proc. Fifteenth Annual Symposium on Computational Geometry, 1999.

Lazy arithmetic. D. Michelucci and J.M. Moreau. IEEE Transactions on Computers, 46, September 1997.

Robustness and Precision Issues in Geometric Computation. S. Schirra. Technical Report, MPI Informatik, January 1998.

Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. J. R. Shewchuk. Technical Report, School of Computer Science, Carnegie Mellon University, May 1996.

Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. Herbert Edelsbrunner and Ernst Peter Mücke. ACM Trans. Graph., 9:66-104, 1990.

Hierarchical surface representation and collision detection

Surface approximation and geometric partitions. P. Agarwal and S. Suri. SIAM J. Comput., 19:1016-1035, 1998.

Kinetic binary space partitions for triangles. P. Agarwal, J. Erickson and L. Guibas. 9th ACM-SIAM Symp. Discrete Algorithms, 1998.

BOXTREE: A hierarchical representation for surfaces in 3D. G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell and A. Tal. Computer Graphics Forum, 15:387-396, August 1996.

OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. S. Gottschalk, M. Lin and D. Manocha. Appeared in Proc. of ACM Siggraph'96, 1996.

Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughs. M. Held, J.T. Klosowski and J.S.B. Mitchell. Proc. 7th Canad. Conf. Computat. Geometry, August 1995.

Collision Detection between Geometric Models: A Survey. M. Lin and S. Gottschalk. Proceedings of IMA Conference on Mathematics of Surfaces 1998, 1998.

Delaunay triangulation and others

Fully dynamic Delaunay triangulation in logarithmic expected time per operation. O. Devillers, S. Meiser and M. Teillaud. Technical Report 1349, INRIA, 1991.

Robust and efficient implementation of the Delaunay tree. O. Devillers. Technical Report 1619, INRIA, 1992.

Improved incremental randomized Delaunay triangulation. O. Devillers. Proc. 14th Annu. ACM Sympos. Comput. Geom., 1998.

On Deletion in Delaunay Triangulation. O. Devillers. Technical Report 3451, INRIA, 1998.

On Deletion in Delaunay Triangulation. Olivier Devillers. Proc. 15th Annu. ACM Sympos. Comput. Geom., 1999.

FIST: Fast Industrial-Strength Triangulation. M. Held, 1998.

Delaunay Refinement Mesh Generation. J. R. Shewchuk. PhD Thesis, School of Computer Science, Carnegie Mellon University, May 1997.

Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. J. R. Shewchuk. First Workshop on Applied Computational Geometry:124-133, May 1996.

Surface simplification

An Efficient Algorithm for Terrain Simplification. P. Agarwal and P. Desikan. 8th ACM-SIAM Symp. Discrete Algorithms, 1997.

Mesh optimization. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Proc. SIGGRAPH 93, August 1993.

Fast polygonal approximation of height fields. M. Garland and P. S. Heckbert. Technical Report, Carnegie Mellon University, September 1995.

Progressive meshes. H. Hoppe. SIGGRAPH 1996 Proceedings, 1996.

View-dependent refinement of progressive meshes. H. Hoppe. SIGGRAPH 1997 Proceedings, 1997.

Efficient implementation of progressive meshes. H. Hoppe. Computers & Graphics, 22:27-36, 1998.

Smooth view-dependent level-of-detail control and its application to terrain rendering.. H. Hoppe. IEEE Visualization:35-42, October 1998.

Fast and Memory Efficient Polygonal Simplification. P. Lindstrom and G. Turk. Proceedings of IEEE Visualization '98, October 1998.

Evaluation of memoryless simplification. P. Lindstrom and G. Turk. IEEE Trans. Vis. Comp. Graph., 5:98-115, 1999.

Image-Driven Simplification. P. Lindstrom and G. Turk. ACM Transactions on Graphics, 19:204-241, July 2000.

Out-of-Core Simplification of Large Polygonal Models. P. Lindstrom. ACM SIGGRAPH 2000, July 2000.

Set operations between curves or surfaces

Practical Segment Intersection with Finite Precision Output. J. D. Hobby. Computation Geometry Theory and Applications, 13, 1999.

Efficient and Accurate B-rep Generation of Low Degree Sculptured Solids using Exact Arithmetic. J. Keyser, S. Krishnan and D. Manocha. Proceedings of ACM Solid Modeling '97, 1997.

An Efficient Surface Intersection Algorithm based on Lower Dimensional Formulation. S. Krishnan and D. Manocha. ACM Trans. on Computer Graphics, 16:74-106, 1997.

Robust Polygon Modeling. V. J. Milenkovic. Computer-Aided Design, 25:546-566, September 1993.

Shortest Path Geometric Rounding. V. J. Milenkovic. Algorithmica, February 1997.


Realistic Simulation of Viscoelastics Bodies. Rogério L.W. Liesenfeld and Jorge Stolfi. Technical Report, Institute of Computing, University of Campinas, September 1997.

Designing a Computational Geometry Algorithms Library. S. Schirra. Technical Report, MPI Informatik, July 1997.

Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. M. Meyer, M. Desbrun, P. Schröder and A. H. Barr. VisMath, Berlin, Germany, 2002.

Optimizing Triangle Strips for Fast Rendering. Francine Evans, Steven S. Skiena and Amitabh Varshney. IEEE Visualization '96, 1996.

Regularised marching tetrahedra: improving iso-surface extraction. G. M. Treece, R. W. Prager and A. H. Gee. Technical Report, Cambridge University, 1998.